

CHEMISTRY BIOLOGY





# Science Teaching Modules Physics



- Specific apparatus for the experiments
- Storage cases fitting the shape of the apparatus in sets or blocks depending on your choice

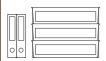
as forces/simple machines. For every item, an STM module is supplied.

- Experimental descriptions
- General accessories which are independent of the system

This system concept allows adaptation to a wide range of requirements to be met in accordance with regional and national curricula, text books, and students' age or level of education.



- Ease of use
- Clear, functional design
- Robust, stable and durable
- Many experiments with few apparatus
- Ideal combination of sets of apparatus in accordance with curricula
- Minimal preparation set-up time for teachers
- Extendable up to the level of secondary education, e.g., wave optics, mechanical oscillations and waves, electric fields.




- Easy-to-understand worksheets for
- Objects of the experiments, preparation, carrying out the experiments and evaluation are presented in a clear structure
- Comprehensive information with experiment results for teachers
- Prepared tables for entering the measuring results
- Suitable for copying for use at schools

# torage



- Stackable cases for space-saving and wellorganized storage
- Apparatus are handed out and put away in little time
- Completeness can be checked quickly after the experiments because the cases fit the shape of the apparatus
- Different fields are distinguished by the colour of the labels





#### Storage in sets

In every case all apparatus needed by **one** group of students are contained.



STM set of apparatus

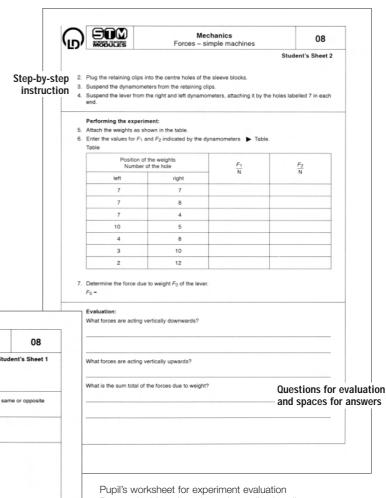
#### Storage in blocks

In the cases apparatus needed by several groups of students (e.g. 5) are contained.



STM block of apparatus




#### Storage of the cases

In Leybold cupboards (801 026 or 801 045) or standard cupboards.

# STM Experiment description and manual



Experiment descriptions and manuals are available in English, German, French and Spanish



Student's Sheet 1

Combining forces in the same or opposing directions

Assignment: To find out how forces combine when they are working in the same or opposite directions.

Apparatus: 2 stand bases 1 stand rod, 25 cm 2 stand rods, 50 cm 1 lever

Required 2 sleave blocks equipment 1 set of 8 weights 1 synamometer, 1.5 N 1 dynamometer, 3 N

Setup:

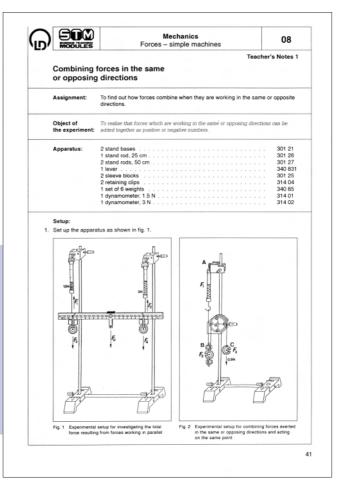
1. Set up the apparatus as shown in fig. 1.

Setup:

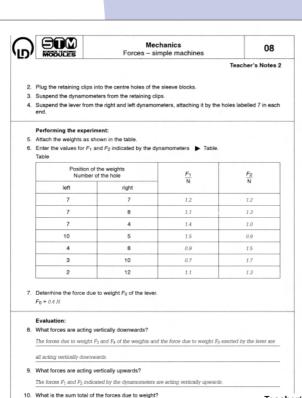
1. Experimental setup for investigating the total force resulting from forces working in parallel in the same or opposing directions and acting on the same point

Pupil's worksheet for experiment evaluation
Prepared tables of results and coordination diagrams

Pupil's worksheet


#### **MANUALS**




### **Experiment descriptions and manuals**



- Teacher's guide and
- pupil's worksheet (to be photocopied) together in a ring folder
- easy-to understand worksheets for the pupils
- clearly structured documentation, giving experiment objectives, preparatory tasks, experiment procedures, analysis of results, and safety instructions
- detailed background and support information for the teacher, together with experiment result

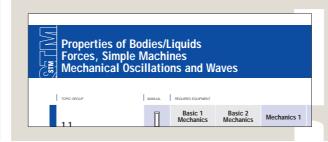


Teacher's worksheet

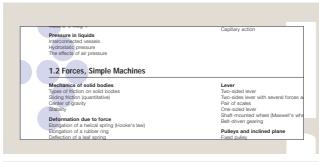


 $F_0 + F_3 + F_4 = 0.4 \, N + 1 \, N + 1 \, N = 2.4 \, N$ 

42

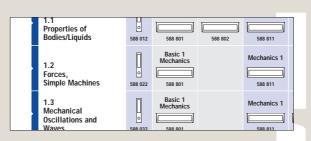

### sтм: from the topic to the order





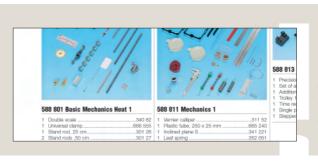

An overview of the topics is given on page 8/9.



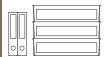



The groups of topics are compiled on pages 10 to 23.




For example, group of topics 1.2 forces, simple machines with the experiment "Two-sided lever".



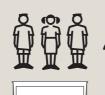



On pages 10/11, the required apparatus and manuals are also listed:

Manual 588 022 Basis 1 588 801 Mechanics 1 588 811



The list of content of the equipment sets are depicted on pages 24 to 28.




#### Science Teaching Modules How to order





?



We propose two or three students for one group.

How much material is needed for a class?





If, for example, 24 students are divided into groups of 3 students each, material for 8 groups is needed.

#### storage in sets...

The students always get all apparatus related to one field (e.g. mechanics) at their workplace. Place the following order, while setting a »S« behind the Cat. No.:

#### **ORDER**

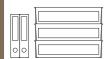
| QUANTITY | DESIGNATION                    | CAT. NO.  |
|----------|--------------------------------|-----------|
| 1        | MANUAL: FORCES/SIMPLE MACHINES | 588 022   |
| 8        | BASIS I                        | 588 801 S |
| 8        | MECHANIK I                     | 588 811 S |
|          |                                |           |
|          |                                |           |

Are the apparatus to be stored in sets or blocks?
(See page 3)

#### or storage in blocks

The teacher gives the students only those apparatus they need for a particular experiment. If the apparatus are stored in blocks, less space in the cupboard is needed. Place the following order, while setting a »B« and the number of groups behind the cat. no.:

#### **ORDER**


| QUANTITY | DESIGNATION                    | CAT. NO.    |
|----------|--------------------------------|-------------|
| 1        | MANUAL: FORCES/SIMPLE MACHINES | 588 022     |
| 1        | BASIS I                        | 588 801 B 8 |
| 1        | MECHANICS I                    | 588 811 B 8 |
|          |                                |             |
|          |                                |             |

Accessories (measuring instruments and power supplies) and consumable material are shown on page 28.



### Summary of topic groups Mechanics · Heat · Electrostatics Electricity

|   | TOPIC GROUP PAGE                                                        | MANUAL  | REQUIRED EQUIPMENT              |                          |                        |                        |                      |
|---|-------------------------------------------------------------------------|---------|---------------------------------|--------------------------|------------------------|------------------------|----------------------|
| · | 1.1 Properties of Bodies/Liquids 10                                     | 588 012 | Basic 1 Mechanics  588 801      | Basic 2<br>Mechanics     | Mechanics 1  588 811   |                        |                      |
| • | 1.2<br>Forces,<br>Simple Machines 10                                    | 588 022 | Basic 1<br>Mechanics<br>588 801 |                          | Mechanics 1  588 811   |                        |                      |
| • | 1.3 Mechanical Oscillations and Waves10                                 | 588 032 | Basic 1<br>Mechanics<br>588 801 |                          | Mechanics 1  588 811   | Mechanics 2  588 812   |                      |
| • | 1.4<br>Linear Motion 12                                                 | 589 042 |                                 |                          |                        |                        | Mechanics 3  588 813 |
|   | 2.1 Thermal Expansion, Heat Propagation and Energy, States of Matter 13 | 588 152 | Basic 1 Mechanics  588 801      | Basic 1<br>Mechanics     | Heat 1 588 831         |                        |                      |
|   | 3.1 Electrostatics 14                                                   | 589 162 | Electrostatics 1  588 73        |                          |                        |                        |                      |
|   | 3.2<br>Electic Fields 14                                                | 589 172 | Electrostatics 1  588 73        | Electrostatics 2  588 74 |                        |                        |                      |
|   | 3.3 Magnetic Forces and Fields 14                                       | 588 302 |                                 |                          | Magnetism 1  588 860   |                        |                      |
|   | 3.4 Basic Electric Circuits16                                           | 588 332 | Basic<br>Electricity<br>588 871 | Electricity 1  588 875   |                        |                        |                      |
|   | 3.5 Electromagnetism and Induction 16                                   | 588 342 | Basic<br>Electricity<br>588 871 | Electricity 1  588 875   | Electricity 2  588 876 |                        |                      |
|   | 3.6 Generators and Motors 16                                            | 588 352 | Basic<br>Electricity<br>588 871 |                          | Electricity 2  588 876 | Electricity 3  588 877 |                      |



# Summary of topic groups Electricity · Electronics · Opto Electronics Optics · Radioactivity



| TOPIC GROUP PAGE                                      | MANUAL             | REQUIRED EQUIPMENT            |                      |                        |                        |                          |
|-------------------------------------------------------|--------------------|-------------------------------|----------------------|------------------------|------------------------|--------------------------|
| 3.7<br>Electrochemistry 16                            | 588 402            |                               |                      |                        |                        | Electrochemistry 588 873 |
| 4.1 Basic Electronic Circuits18                       | 588 422            | Basic<br>Electrics            |                      | Electronics 1  588 881 |                        |                          |
| 4.2<br>Transistor<br>Applications 18                  | 588 432            | Basic<br>Electrics<br>588 871 | Electrics 2  588 876 | Electronics 1  588 881 | Electronics 2  588 882 |                          |
| 4.3<br>Opto Electronics 18                            | 588 442            | Basic<br>Electrics            |                      | Electronics 1  588 881 | Electronics 2  588 882 | Electronics 3  588 883   |
| 5.1<br>Geometrical Optics<br>with the Raybox 20       | 588 202            | Optics<br>Raybox<br>588 845   |                      |                        |                        |                          |
| 5.2 Geometrical Optics on the Precision Metal Rail 20 | 588 212            | Basic<br>Optics<br>588 840    | Optics 1  588 841    |                        |                        |                          |
| 5.3<br>Colour Mixing 20                               | 588 222            | Basic<br>Optics<br>588 840    |                      | Optics 2  588 842      |                        |                          |
| 5.4 Diffraction22                                     | 589 252<br>589 262 | Basic<br>Optics<br>588 840    |                      |                        | Optics 3 588 843       |                          |
| 5.5<br>Polarization 22                                | 589 272            | Basic<br>Optics<br>588 840    |                      |                        |                        | Optics 4 588 844         |
| 6.1<br>Radioactivity 23                               | 588 482            | Radioactivity  588 855        |                      |                        |                        |                          |



# Properties of Bodies/Liquids Forces, Simple Machines Mechanical Oscillations and Waves

TOPIC GROUP REQUIRED EQUIPMENT Basic 1 Basic 2 **Mechanics 1** Mechanics Mechanics 1.1 **Properties of Bodies/Liquids** 588 012 588 801 588 802 588 811 Basic 1 **Mechanics 1** Mechanics 1.2 Forces, **Simple Machines** 588 022 588 801 588 811 Basic 1 1.3 **Mechanics 1 Mechanics 2** Mechanics Mechanical Oscillations and





TOPICS

#### 1.1 Properties of Bodies/Liquids

#### Measuring of length and time

Measuring lengths

Planemetry

Calculating the volume of regularly shaped bodies

Calculating the volume of solid bodies by the amount of liquid displaced

Calculating the volume of gaseous bodies

Measuring time (chronometry)

#### Measurement of mass and density

Calculating mass

Determination of the density of regularly shaped bodies

Determination of the density of irregularly shaped bodies

Determination of the density of liquids

Mass and weight

#### Pressure in liquids

Interconnected vessels

Hydrostatic pressure

The effects of air pressure

#### Forces acting on bodies in liquids

The weight of bodies in water

Buoyancy force as a function of depth of immersion and body mass

Buoyancy force as a function of the density of a fluid

Buoyancy force as a function of the volume of a body

Archimedes' principle

Sinking - floating suspended in a liquid - floating on a liquid

#### Density of liquids

Calculating density from volume and mass

The areometer

#### Forces at the surface of liquids

Surface tension

Capillary action

#### 1.2 Forces, Simple Machines

#### Mechanics of solid bodies

Types of friction on solid bodies

Sliding friction (quantitative)

Center of gravity

Stability

#### **Deformation due to force**

Elongation of a helical spring (Hooke's law)

Elongation of a rubber ring Deflection of a leaf spring

#### Combining and breaking down forces

Combining forces in the same or opposing directions

Combining forces in specified amounts

Breaking forces down into force components

#### Oscillations

String pendulum Bar pendulum

Spring pendulum

Leaf spring oscillations

#### Lever

Two-sided lever

Two-sides lever with several forces acting upon it

Pair of scales

One-sided lever

Shaft-mounted wheel (Maxwell's wheel)

Belt-driven gearing

#### Pulleys and inclined plane

Fixed pulley

Movable pulley Hoist with two pulleys

Block and tackle 1 (open type)

Block and tackle 2 (compacte version)

Forces acting on a inclined plane

Work performed on a inclined plane

Energy conversion

#### 1.3 Mechanical Oscillations and Waves

#### Pendulum with harmonic oscillations

Thread pendulum

Rod pendulum

Helical spring pendulum

Torsion pendulum

Leaf spring pendulum

#### Time dependence of pendulum oscillations

Oscillation damping by body friction

Evaluation of registered leaf spring oscillations

Distance/time and speed/time diagrams of harmonic oscillations

Forced oscillations

Forced oscillations of pendulums

Forced oscillations of rod pendulum with amplitude recording

#### Linear superposition of oscillations

Linear superposition of oscillations, amplitude, phase and frequency dependences

Oscillations of mechanically coupled rod pendulums

Oscillations of magnetically coupled leaf spring pendulums with oscillation recording

#### Formation of waves (wave machine)

Energy transport in longitudinal and transversal waves Standing transversal waves and longitudinal waves with loose and fixed ends

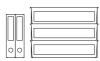
#### Standing waves

Frequencies of standing cord waves

Phase velocity of cord waves

Phase velocity of helical spring waves

Standing helical spring waves


Oscillation nodes and antinodes as a function of the excitation frequency

#### Superpositioning of cord waves

Superposition of cord waves of identical frequency Superposition of cord waves with a slight frequency



### **Linear Motion**



TOPIC GROUP

MANUAL

REQUIRED EQUIPMENT

1.4 Linear Motion



Mechanics 3
588 813

TOPICS

#### 1.4 Linear Motion

#### Regular motion

Momentary velocity

Friction

Rectolinear and regular motion

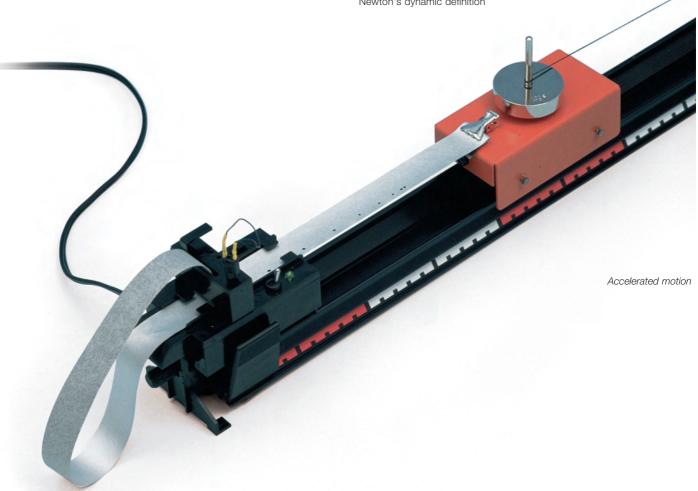
Spacer/time and velocity diagram

Accelerated motion

Uniformly accelerated motion

Velocity change with acceleration

#### Accelerated motion: position/time and velocity/time diagram


Determining final velocity I

Determining final velocity II

Quantitative relationships of an accelerated motion

Free fall

Newton's fundamental equation Newton's dynamic definition



TOPIC GROUP



# Thermal Expansion, Heat Propagation and Energy, States of Matter



2.1 Thermal Expansion, **Heat Propagation and** 

Energy, States of Matter 588 152

MANUAL

Basic 1 Mechanics 588 801

REQUIRED EQUIPMENT

Basic 2 Mechanics 588 802

Heat 1 588 831

TOPICS

#### 2.1 Thermal Expansion, Heat Propagation and Energy, States of Matter

#### Thermal expansion

Thermal properties of water Calibration a thermometer Linear expansion of solid bodies Thermal properties of a bimetal Heating air (at a constant pressure) Heating air (at constant volume)

#### **Heat transfer**

Termal conduction in solid bodies Heat transfer in liquids Heat transfer in gases Changes in temperature causes by thermal radiation

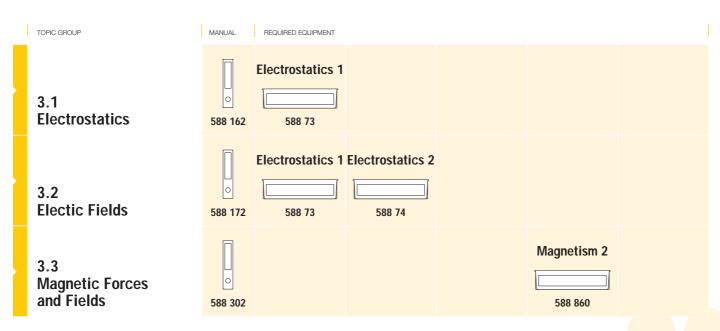
#### Themal insulation

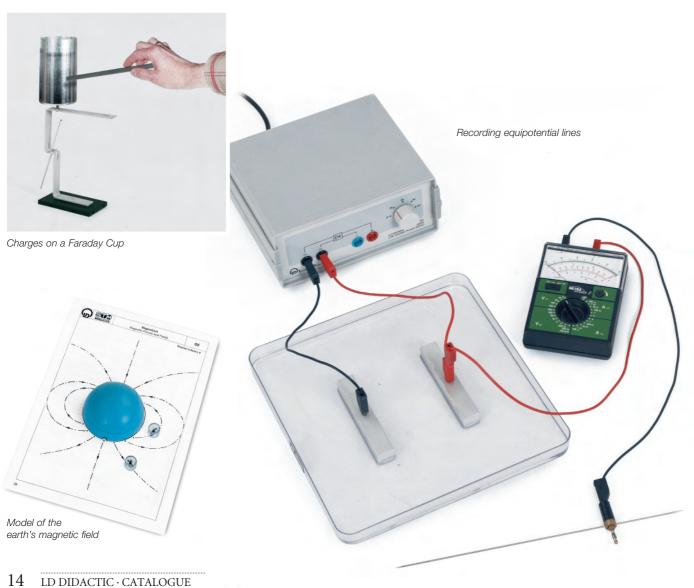
Cooling down water

#### **Heat capacities**

Heating up different volumes of water Heating of different liquids Mixtire temperature Specific heat capacity of water Specific heat capacity of solid bodies Heat capacity of a calorimeter

#### States of aggregation and transition


Temperature changes during heating Fusion heat of ice Condensation of water vapor Temperatures in water-salt mixtures Distillation




Linear expansion of solid bodies



# Electrostatics Electric Fields Magnetic Forces and Fields









TOPICS

#### 3.1 Electrostatics

#### **Contact electricity**

Proof of charge types on friction rods with a glow lamp Proof of charge types on foils and sheets with a glow lamp Contact electricity between electricity clear adhesive tape and metal Contact electricity generation by friction

#### Forces acting between charges

Forces acting between charges on friction rods Forces acting on a charged pendulum pair Model of an electroscope Principle of electroscope operation

#### Electric induction - Effect of charges on neutral bodies

Induction phenimena with conductors and non-conductors
Electrostatic charging of hair
Forces caused by induction
Induction phenomena on a pointer
Electric induction on a pendulum pair
Electric induction in a water stream

#### Electric induction - Effect of charges on a close electroscope

Induction phenomena on an electroscope caused by friction rods Discharge of an induced charge on an electroscope Induction phenomena on an electroscope caused by a foil

#### Charge stores, faraday cup

Conductive bodies as charges stores Location of charges on a Faraday cup Proof of charges on a Faraday cup Electrostatic forces on a Faraday cup

#### **Electrostatic interaction**

Electrostatic forces between a friction rod and pendulum Charge transport by a pendulum

#### Insulators and conductors

Charges on insulators
Proof of conductivity with a glow lamp
Proof of conductivity with an electroscope
Influence of a flame on electrically charged bodies
Influencing the electroscope charge by means of a flame
Point discharge

#### 3.2 Electric Fields

#### Electrical charges

Separation of charge(contact and friction electricity)
Charge distribution on electrostatically charged bodies

#### Electric fields

Recording equipotential lines Electric induction Field investigations on a Faraday cup Transfer of electrical charges on Faraday cups

#### Capacitors

Voltage change during charging of a Faraday cup with water drops
Capacitances of capacitors (relative determination)
Laws of the plate capacitor
Capacitance of bodies with respect to the environment (Conductor balls and other bodies)

#### Further experiments on charge transport

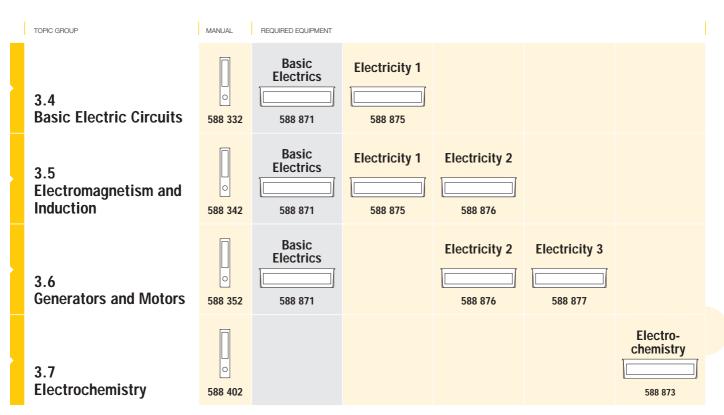
Charge transport by a pendulum Charge transport by poor conductors

#### 3.3 Magnetic Forces and Fields

#### Effects of magnetic forces

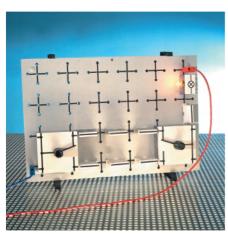
Magnetic and non-magnetic materials Positions of the magnetic poles of bar magnets Polarity of magnets

#### Magnetic induction

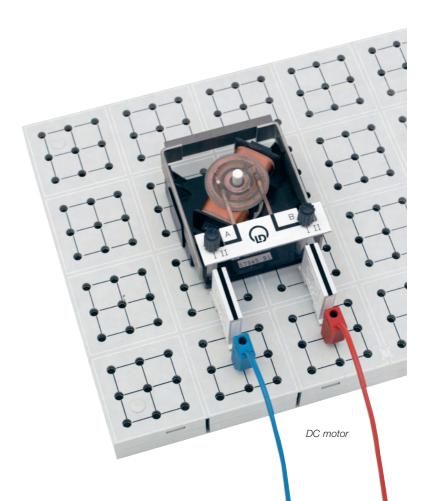

Magnetization
Disassembling magnets
Putting magnets together

#### Magnetic fields

Demonstration a magnetic field with iron filings
Lines of force of a bar magnet
Experiments on a model of the earth's magnetic field
Lines of force of a horseshoe magnet
Lines of force of attracting magnetic poles
Lines of force of repelling magnetic poles




# Basic Electric Circuits Electromagnetism and Induction Generators and Motors · Electrochemistry






Relay



Switching over







TOPICS

#### 3.4 Basic Electric Circuits

#### Circit and switches

The simple circuit Conductors and non-conductors (insulators) Switching over Two-way circuit AND gate, OR gate

#### Electrical measuring methods

Measuring current - current in a simple circuit Measuring voltage - voltages in a simple circuit

#### Ohmic resistor

Ohm's law

How a wire's resistance depends on ist material, length and cross-section Voltage distribution in a current-carrying wire (potentiometer)

Connecting resistors in series

Connecting resistors in parallel

#### 3.5 Electromagnetism and Induction

#### **Electromagnetism**

Magnetic effect of electric current
Current carrying conductor in a magnetic field
Magnetic field of a coil

#### Electromagnetic applications

Electromagnet

Model of a magnetic circuit breaker
Model of a moving-iron instrument
Model of an electromagnetic relay
Model of a buzzer (doorbell)

Model of a loudspeaker

#### Induction

Electromagnetic induction with bar magnet an a coil Electromagnetic induction with two coils

#### Voltage sources

Connecting monocells in series and in parallel
Terminal voltage and internal resistance of a voltage source

#### Electrical application circuits

Self-heating and temperature sensitivity in wire-wou<mark>nd resistors</mark>
Model of a fuse

Bimetallic-element switches (model of a fire alarm) Model of a thermostat

Power of and work done by an electrical current

#### Transformer

Voltage transformation Current transformation

#### Technical applications of induction

Self-induction of a coil (model of an induction coil) Model of an AC generator Model of a synchronous motor

#### Coil and capacitor

DC and AC resistance of a coil I (observation experiment)
DC and AC resistance of a coil II (measuring experiment)
Capacitor in a DC circuit
Capacitor in an AC circuit

#### 3.6 Generators and Motors

#### **Basic experiments**

Magnetic field of the stator Magnetic field of the rotor Rotors in the magnetic field of the stator Electromagnetic induction with bar magnet and coil

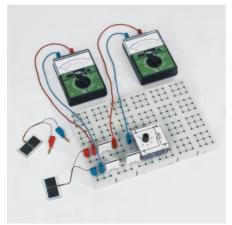
#### Generators

Dynamo
Principle of the universal generator
Operating characteristics of the universal generator
Power plant generator
AC/DC generator with electromagnetic stator

#### **Electric motors**

Working principle of the DC motor
Power consumption of the DC motor
DC motor with electromagnetic stator
Universal shunt-wound motor
Principle of the universal series-wound motor
Power consumption of the universal series-wound motor
Synchronous motor
Electronic motor

#### 3.7 Electrochemistry

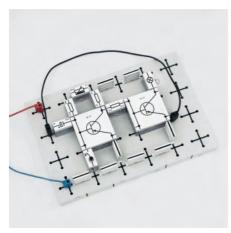

#### **Basic experiments**

Conductivity of aqueous solutions (electrolytes)
Observing a liquid conducting a current (electrolysis)
Relationship between current and voltage in an electrolyte
How an electrolyte's resistance depends on the electrode gap
Electroplating
Voltaic cells
Lead storage battery (accumulator)

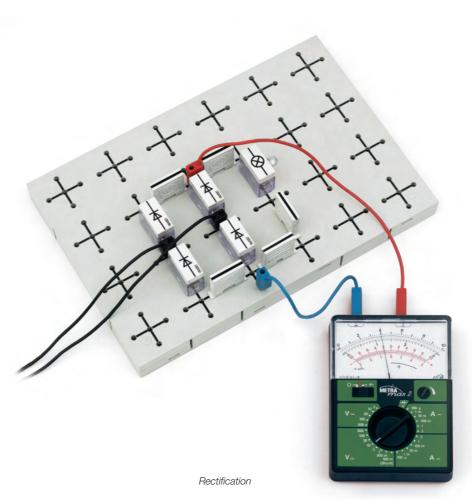


# Basic Electronic Circuits Transistor Applications Opto Electronics

TOPIC GROUP MANUAL REQUIRED EQUIPMENT Basic **Electronics 1 Electrics** 4.1 **Basic Electronic Circuits** 588 422 588 871 588 881 Basic **Electrics 2 Electronics 1 Electronics 2 Electrics** 4.2 **Transistor Applications** 588 022 588 871 588 876 588 881 588 882 **Basic Electronics 1 Electronics 3 Electronics 2 Electrics** 4.3




588 032


588 871

Characteristics of solar cells

**Opto Electronics** 



Delay switch



588 881

588 882

588 883







#### 4.1 Basic Electronic Circuits

#### Special resistors

Temperature-dependent resistor NTC Light-dependent resistor LDR (photoresistor) Light controlled relay

#### **Diodes**

Characteristic of a diode
Half-wave rectification
Full-wave rectification
Measuring peak voltages, voltage doubling
Light emitting diodes
Polarity tester with diodes
Series connection of diodes
Characteristic of a Z-diode
Overload protection using a Z diode

#### **Transistors**

Testing for hum

Diode paths with transistors, testing circuit with light emitting diodes
Transfer characteristic of a transistor
Transistor circuit I: voltage control
Base voltage division
Transistor circuit II: current control
Light controlled transistor I: light barrier
Light controlled transistor II: twilight switch
Delay switch

#### 4.2 Transistor Applications

#### **Diode circuits**

Zero-point suppression with a Z-diode
Using diodes to protect against overvoltage and reverse polarity
Suppressing induction voltages with a diode (free-wheeling diode)
Smoothing pulsating DC voltages with capacitors
Constant current source - charging capacitors with a constant current

#### Voltage stabilizer circuit

Series voltage regulation
Voltage stabilizer circuit
Basic experiments with flip-flops
Bistable flip-flop as a memory element
Monostable flip-flop as a time-delay swich
Astable flip-flop (astable multivibrator)
Generating sounds with an astable multivibrator (police siren, birdsong)
Miniature organ I - musical scale on a pencil line

Extra experiment: miniature organ II - making and tuning a small elec-

#### **Amplifying circuits**

Amplifying a voltage pulse

Setting and stabilizing the working-point of a single-stage microphone amplifier

Two-stage microphone amplifier

Medium-wave receiver, single-stage and two-stage

Basic experiment: amplifier for voltage differential (difference amplifier)

Sensitive light meter with a difference amplifier

Determining the DC voltage gain (push-pull gain) of a difference amplifier

Touch-contact switch, moisture and filling-level indicator

Current gain factors

#### Feedback and oscillators

Electronic motor Acoustic feedback Meissner circuit Three-point oscillator Phase shift oscillator Wien oscillator

#### 4.3 Opto Electronics

#### **Experiments with light waveguides**

Demonstration light conduction in light waveguides Attenuation in the light waveguide

#### Light emitting diodes

tronic keyboard

The light emitting diode in the circuit: reverse bias and forward bias behavior Characteristics of light emitting diodes

#### Voltage stabilizer circuit

Basic circuit with a photodiode

#### Solar cells

Forward and reverse direction of a solar cell Internal resistance of a solar cell Output and power characteristics of a solar cell No-load voltage of a solar cell Short-circuit current of a solar cell Connecting solar cells in series Connecting solar cells in parallel Conversion light energy into motion

#### **Phototransistors**

Photo transistor with base connection, basic experiments
Photo transistor equivalent circuit
Current gain of the photo transistor

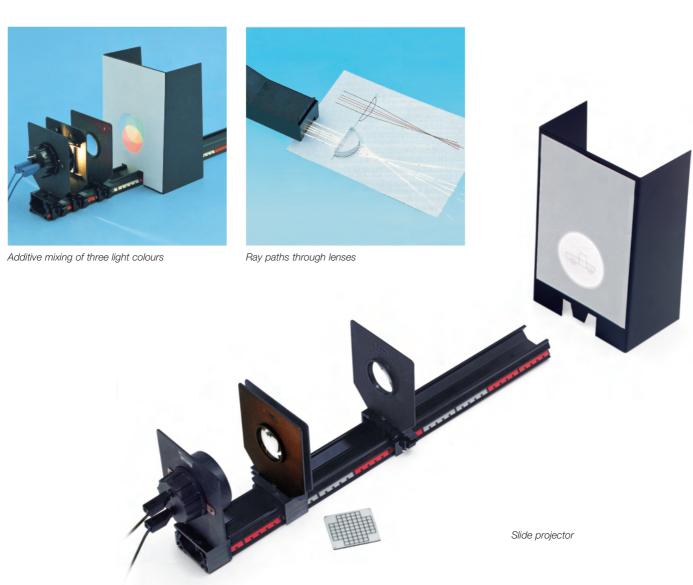
#### Forked light barrier

Forked light barrier with following transistor

#### Light transmitters and receivers

Transmitting sound with the light waveguide
Transmitting music and speech with the light waveguide




# Geometrical Optics with the Raybox Geometrical Optics on the Precision Metal Rail Colour Mixing

588 222

588 840

TOPIC GROUP REQUIRED EQUIPMENT **Optics** Raybox 5.1 **Geometrical Optics** with the Raybox 588 202 588 845 Basic 5.2 Optics 1 **Optics Geometrical Optics** on the Precision **Metal Rail** 588 212 588 840 588 841 **Basic** Optics 2 **Optics** 5.3 **Colour Mixing** 

588 842









#### 5.1 Geometrical Optics with the Raybox

#### Beginning experiments on light

The raybox Propagation of light Can light pass through all matter? Shadows

#### Reflection at mirrors

Reflections at a plane morror Mirror image at a plane mirror Ray paths in a concave mirror Focal length of a convex mirror

#### Refraction

Refraction of light at a semicircular body I Refraction of light at a semicircular body II Total reflection Refraction at a plane-parallel Plate Refraction in different media at a rectangular cell Refraction in different media at a semicircular cell Diviating prism Inverting prism Dispersion of white light with a prism

#### Lenses

Ray paths through a convex lens Ray construction with a biconvex lens Spherical aberration of a lens Ray paths through a concave lens Ray construction with a concave lens The human eye Visual error and eye correction

#### 5.2 Geometrical Optics on the Precision Metal Rail

#### **Basic experiments**

Propagation of light Shadows Pinhole camera Illuminance Luminous intensity Light collectors

#### Light and shadow in nature

Day and night
The seasons
Phases of the moon
Lunar and solar eclipse

#### Reflection at mirrors

Reflection at the plane mirror Locations of images in a plane mirror Mirror images at the plane mirror Ray paths for different types of mirrors Properties of a concave mirror Properties of a convex mirror Focal length law of a concave mirror Images at the concave mirror Images at the convex mirror

#### Refracion of light

Refraction of light at a semicircular body I
Refraction of light at a semicircular body II
Total reflection
Refraction at a plane-parallel plate
Refraction in different media at a rectangular cell and a plane-parallel plate
Refraction in different media for a semicircular cell and a semicircular body
Deviating prism
Inverting prism

#### Dispersing and recombining of colours

Dispersion of white light with a prism Recombining spectral colours with a lens

#### Lenses/lens aberration

Ray path through a convex lens
Constructional rays of a convex lens
Images of convex lenses
The image formula
Determining the focal length of a convex lens by means
of autocollimation

Ray path through a concave lens Ray paths of lens combinations Spherical aberration of lenses Cushion and barrel distortion

#### Combinations of lenses

Focal lengths of lens systems

#### Optical instruments for enlarging the field of view

Magnification with a magnifier
The microscope
Changing the magnification of a microscope
Telescope models
Magnification in a terrestial telescope
Magnification in an astronomical telescope

#### Optical instruments and eye

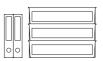
The camera
Depth of field of a camera
The slide projector
The human eye
Vision errors and vision correction
Optical illusions

#### 5.3 Colour Mixing

#### Investigation of light paths through a prism

Path of light through a prism Light paths through a prism in different positions Deflection in the prism Minimum and maximum deflection

#### Spectral colours


Dispersion of white light with a prism Chromatic aberrations of images Investigating the spectrum colours Spectra for different slits Colour fringing at edges Edges spectra

#### Colour mixing

Recombining a spectrum Light colours and object colours Additive mixing of two light colours Additive mixing of three light colours Subractive colour mixing



## Diffraction Polarisation



TOPIC GROUP REQUIRED EQUIPMENT **Basic** Optics 3 **Optics** 5.4 589 252 **Diffraction** 588 840 588 843 **Basic** Optics 4 **Optics** 5.5 **Polarization** 589 272 588 840 588 844

TOPICS

#### 5.4 Diffraction

#### Diffraction at diffraction objects

Diffraction at a half plane

Diffraction at a slit

Diffraction at double slits Diffraction at multiple slits

Diffraction at gratings

Conditions for coherence with lamp light

#### Diffraction at complementary diaphragms (Babinet principle)

Slit and wire

Holes and objects

Complementary crossed gratings

#### Resolution capability

Resolution capability of the eye

#### Two-beam Interference

Fresnel's double mirror experiment Fresnel's biprism experiment Young's double slit experiment Newton's rings

#### 5.5 Polarization

#### Polarization filters

Using polarization filters (introductory experiments) Malus' law

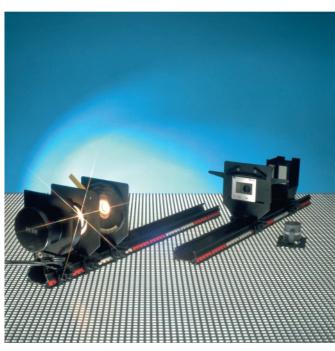
#### Strain optical double refraction (optical anisotropy)

Chromatic polarization

Double refraction in various materials

Strain double refraction on plexiglass models

#### Polarization resulting from reflection and refraction


Polarization resulting from reflection Polarization resulting from refraction Brewster's law

#### Polarization resulting from scattering

Tyndall-Effekt in einer Emulsion

#### Optical activity

Polarimetry (saccharimetry) and rotary dispersion



Set-ups for diffraction experiments



TOPICS

#### 6.1 Radioactivity

#### Investigating the Geiger-Müller counter tube

Detecting the radiation emitted by a radioactive gas mantle Behavior of a Geiger-Müller counter tube with no radiation source Investigating the radiotransparency or the end window and housing of the end-window counter

Reducing the size of the end window of a counter tube Counting losses in a end-window counter

#### Radioactive radiation

Radiation from an unscreened source Radiation from a radiation source screened at the sides Using reflectors with an unscreened radiation source Investigating the radiation beam of a radium preparation

#### Statistics of radioactive decay

The effect of the distance between the radiation source and the end-window counter on the pulse rate

Investigating the variations in pulse rate measurements Statistical error of a single measurement Statistical investigation of background radiation

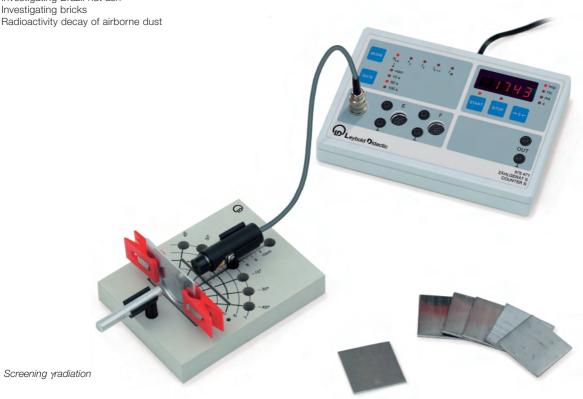
#### Investigating different sources of radiation

Pulse rate measurements for different masses of thorium Investigating potassium sulphate Investigating Brazil nut ash Investigating bricks

#### Distinguishing $\alpha$ , $\beta$ and $\gamma$ radiations

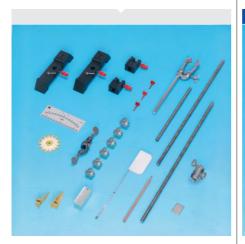
The effect of paper on the pulse rate when placed between a mixed radiation source and the end-window counter
Testing for different radiation types using paper filters

#### β radiation


Testing for different radiation types using a magnetic field Deflection  $\beta$  radiation with a magnetic field Scattering of  $\beta$  radiation Backscattering of  $\beta$  particles

#### Screening y radioation

Screening  $\gamma$  radiation with different materials Screening  $\gamma$  rays with lead layers of different thicknesses


#### Technical applications of radioactive radiation

Monitoring contents with  $\beta$  radiation (radiographic method) Measuring layer thicknesses with  $\beta$  rays (radiographic method) Monitoring filling levels with  $\gamma$  rays (radiographic method) Testing for cavities in a plastic-coated lead slide (radiographic methode) Measuring layer thicknesses with  $\beta$  rays (backscatter method)





### List of content



#### 588 801 Basic Mechanics Heat 1

| _ |                                |            |
|---|--------------------------------|------------|
| 1 | Double scale                   | 340 82     |
| 1 | Universal clamp                | 666 555    |
| 1 | Stand rod, 25 cm               | 301 26     |
| 2 | Stand rods ,50 cm              | 301 27     |
| 1 | Double clamp                   | 301 09     |
| 1 | Multi-clamp                    | 666 615    |
| 1 | Metal plate                    | 200 65 559 |
| 3 | Support clips, for plugging in | 314 04     |
| 2 | Stand bases, MF                | 301 21     |
| 2 | Support blocks                 | 301 25     |
| 1 | Pair of pointers               | 301 29     |
| 1 | Universal pencil               | 309 45     |
| 1 | SET of 6 leads, 50 g ea        | 340 85     |
| 1 | Aluminum block                 | 362 32     |
| 1 | Tape measure 1.5 m             | 311 78     |
| 1 | Cord 20 m                      | 200 70 322 |
|   |                                |            |



#### 588 802 Basic Mechanics Heat 2

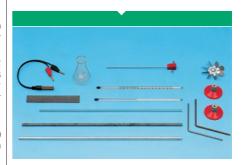
| _ |                            |              |
|---|----------------------------|--------------|
| 1 | Beaker, 250 ml             | 664 130      |
| 1 | Measuring cylinder, 100 ml | 590 08       |
| 1 | Plastic beaker, 250 ml     | 664 123      |
| 1 | Silicone tubing, 1 m       | 667 194      |
| 2 | Plastic tubes, 25 cm       | 200 69 648   |
| 1 | Round tin                  | 200 69 647   |
| 1 | Double pipe support        | 200 69 370   |
| 1 | Connector                  | 665 226      |
| 4 | Cap                        | 200 69 649   |
| 1 | Mini-funnel                | 309 83       |
| 1 | Stopper with hole          | 200 69 304   |
| 2 | Test tube                  | from 664 042 |



#### 588 811 Mechanics 1

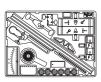
| 1 | Vernier calliper          | 311 52  |
|---|---------------------------|---------|
| 1 | Plastic tube, 250 x 25 mm | 665 240 |
| 1 | Inclined plane S          |         |
| 1 | Leaf spring               | 352 051 |
| 2 | Pulleys d=100 mm          | 340 921 |
| 2 | Pulley bridge             | 340 930 |
| 2 | Balance pans with stirrup | 342 47  |
| 1 | Dynamometer 1.5 N         | 314 01  |
| 1 | Dynamometer 3.0 N         | 314 02  |
| 1 | Helical spring 0.25 N/cm  | 352 08  |
| 1 | Helical spring 0.1 N/cm   | 352 07  |
| 1 | Set of wheights 1-50 g    | 590 27  |
| 1 | Lever with pointer        | 340 831 |
| 2 | Pulleys d=50 mm           | 340 911 |
| 1 | O-rings, rubber 10 pcs    | 340 90  |
| 1 | Coupling plug             | 340 89  |
| 1 | Plug-in axle              | 340 811 |
| 1 | Load hook                 | 340 87  |
| 1 | Pressure probe            | 362 301 |
| 1 | Capillary apparatus       | 362 26  |
| 1 | Lead shot 100 g           | 362 351 |
| 1 | Stopper without hole      | 667 257 |




#### 588 812 Mechanics 2

| 1 | Pair of bar pendulums with axles | .346 03 |
|---|----------------------------------|---------|
| 1 | Torsion wire with bar            | .346 02 |
| 1 | Perlon Yarn118                   | 05 103  |
| 1 | Rubber cord200                   | 66 629  |
| 1 | Clamping block                   | .346 05 |
| 1 | STE Motor with rocker            | .579 42 |
|   |                                  |         |




#### 588 813 Mechanics 3

| 1 | Precision metal rail, 1 m  | 460 | 81 |
|---|----------------------------|-----|----|
| 1 | Set of acceleration masses | 337 | 04 |
| 1 | Additional mass 1, 100 g   | 337 | 05 |
| 1 | Trolley 1, 85 g            | 337 | 00 |
| 1 | Time recorder              | 337 | 18 |
| 1 | Single pulley on rider     | 337 | 14 |
| 1 | Stepped support block      | 337 | 06 |
|   |                            |     |    |



#### 588 831 Heat

| 1 | Immersion heater, 12 V/11W           | 597 48  |
|---|--------------------------------------|---------|
| 1 | Erlenmeyer-flask, 50 ml              | 664 248 |
| 1 | Pointer for linear expansion         | 381 331 |
| 1 | Stirring thermometer, -30 to +110°C. | 382 21  |
| 1 | Stirring thermometer, ungraduated    | 382 20  |
| 1 | Blade wheel                          | 387 79  |
| 1 | Pair of radiation probes             | 384 531 |
| 1 | Heat conducting rods, Fe/Cu          | 384 501 |
| 1 | Al-tube, 44 cm long                  | 381 332 |
| 1 | Fe-Tube, 44 cm long                  | 381 333 |
| 1 | Ascending tube, 40 cm                | 381 10  |
| 1 | Bimetallic strip                     | 381 311 |
|   |                                      |         |





#### 588 860 Magnetism 1

| 1 | Hemisphere for earth's magnetism  | 510 | 56 |
|---|-----------------------------------|-----|----|
| 2 | Bar magnets                       | 510 | 50 |
| 1 | Shaker for iron fillings          | 514 | 72 |
| 1 | Storage bottle with iron fillings | 514 | 73 |
| 1 | Direction-finding compass         | 510 | 55 |
| 1 | Pair of plotting compasses        | 510 | 53 |
| 1 | Set of 4 magnetizable rods        | 510 | 54 |
| 1 | Pair of iron yokes                | 510 | 60 |
|   |                                   |     |    |



#### 588 73 Electrostatics 1

| 1 | Set of dielectrics, 300 mm x 300 mm544 25 |
|---|-------------------------------------------|
| 1 | Tubular glow lamp 110 Vfrom 505 41        |
| 1 | Pair of plastic clips200 67 942           |
| 1 | Pair of electrostatic pendulums200 67 941 |
| 1 | Induction plate, 40 x 80 mm542 51         |
| 2 | Polyethylene friction foils200 70 750     |
| 2 | Pairs of friction rods,                   |
|   | acrylic glass/PVC541 00                   |
| 1 | Faraday's cup546 12                       |
| 1 | Electroskope S540 08                      |
|   |                                           |



#### 588 74 Elektrostatics 2

| 1 Electrolytic tank, with 2 rod-, 2 disc- and 1 ring-form electrodes                                                                                                                                                                                             | 1 | Faraday's cup546 12                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------|
| connections each and spacers                                                                                                                                                                                                                                     | 1 | Pair of metal plates,                   |
| 1 Electrolytic tank, with 2 rod-, 2 disc- and 1 ring-form electrodes                                                                                                                                                                                             |   | 290 x 290 mm each, with 4-mm plug       |
| with 2 rod-, 2 disc- and 1 ring-form electrodes                                                                                                                                                                                                                  |   | connections each and spacers544 24      |
| 1 ring-form electrodes                                                                                                                                                                                                                                           | 1 | Electrolytic tank,                      |
| 1 Set of 3 metal spheres, 25/30/35 mm dia., with attachable insulating handle                                                                                                                                                                                    |   | with 2 rod-, 2 disc- and                |
| 25/30/35 mm dia., with attachable insulating handle                                                                                                                                                                                                              |   | 1 ring-form electrodes545 09            |
| with attachable insulating handle                                                                                                                                                                                                                                | 1 | Set of 3 metal spheres,                 |
| 1 Crocodile clip, polished                                                                                                                                                                                                                                       |   | 25/30/35 mm dia.,                       |
| <ul> <li>2 Plugs with 4-mm side and top connections</li></ul>                                                                                                                                                                                                    |   | with attachable insulating handle543 00 |
| top connections                                                                                                                                                                                                                                                  | 1 | Crocodile clip, polishedfrom 501 861    |
| 1 Coupling plugs 4 mm       340 89         1 Two-way adapter 4 mm       from 501 641         1 Knitting needle       from 510 32         1 Metal plate, 40 mm x 40 mm, with insulating handle       542 52         1 Induction plate, 40 mm x 80 mm       542 51 | 2 | Plugs with 4-mm side and                |
| <ul> <li>1 Two-way adapter 4 mmfrom 501 641</li> <li>1 Knitting needlefrom 510 32</li> <li>1 Metal plate, 40 mm x 40 mm, with insulating handle</li></ul>                                                                                                        |   | top connectionsfrom 501 564             |
| <ul> <li>1 Knitting needle</li></ul>                                                                                                                                                                                                                             | 1 | Coupling plugs 4 mm340 89               |
| <ul><li>1 Metal plate, 40 mm x 40 mm,<br/>with insulating handle542 52</li><li>1 Induction plate, 40 mm x 80 mm542 51</li></ul>                                                                                                                                  | 1 | Two-way adapter 4 mmfrom 501 641        |
| with insulating handle                                                                                                                                                                                                                                           | 1 | Knitting needlefrom 510 32              |
| 1 Induction plate, 40 mm x 80 mm542 51                                                                                                                                                                                                                           | 1 | Metal plate, 40 mm x 40 mm,             |
| · · ·                                                                                                                                                                                                                                                            |   | with insulating handle542 52            |
| 1 Metal coated hollow sphere543 01                                                                                                                                                                                                                               | 1 | Induction plate, 40 mm x 80 mm542 51    |
|                                                                                                                                                                                                                                                                  | 1 | Metal coated hollow sphere543 01        |



#### 588 873 Electrochemistry 1

| 2 | Copper electrodes, 76 x 40 mmfrom 591 | 53 |
|---|---------------------------------------|----|
| 1 | Zinc electrode, 76 x 40 mmfrom 591    | 54 |
| 1 | Iron electrode, 76 x 40 mmfrom 591    | 55 |
| 1 | Electrolysis cell591                  | 51 |
|   |                                       |    |



#### 588 871 Basic Electricity/Electronics

| 1 | Plug-in board A4         | 576 74       |
|---|--------------------------|--------------|
| 1 | Board holders            | 576 77       |
| 1 | Set of 10 bridging plugs | 501 48       |
| 2 | Coupling plugs           | 340 89       |
| 2 | Croc-clips, polished     | from 501 861 |
| 1 | STE Resistor, 47 W       | 577 28       |
| 2 | STE Resistors, 100 W     | 577 32       |
| 2 | STE Lamp holders, E10    | 579 05       |
| 1 | STE Toggle switch        | 579 13       |
| 2 | STE Monocell holders     | 576 86       |
|   |                          |              |

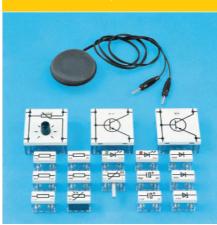
### List of content



#### 588 875 Electricity 1

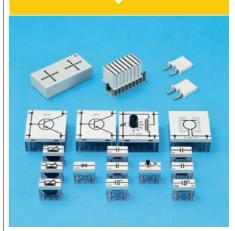
| STE Changeover switches, single-pole582 81 |
|--------------------------------------------|
| Wire wrapping plate567 18                  |
| Set of conductors/insulators567 06         |
| Bimetallic strip381 311                    |
| Leaf spring with contact strip579 332      |
| Plug-in holders579 331                     |
|                                            |




#### 588 876 Electricity 2

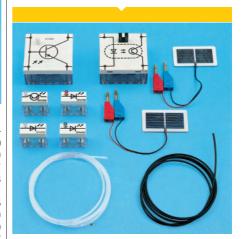
| 1 | Bar magnet                    | 510 50   |
|---|-------------------------------|----------|
| 1 | U-core, demountable           | 593 21   |
| 1 | Coil, 500 turns               | 590 83   |
| 1 | Coil, 1000 turns              | 590 84   |
| 1 | Set of 4 magneticeable rods   | 510 54   |
| 1 | Glow lamp, 115 V              | 505 36   |
| 1 | Rotary support for bar magnet | 510 51   |
| 1 | Plotting compassfror          | n 510 53 |




#### **588 877 Electricity 3**

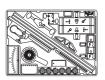
| STE Stator with pole shoes | .579                         | 45                         |
|----------------------------|------------------------------|----------------------------|
| STE Coil rotor             | .579                         | 46                         |
| STE Brush yoke             | .579                         | 47                         |
| STE Magneto inductor       | .579                         | 48                         |
|                            | STE Coil rotorSTE Brush yoke | STE Stator with pole shoes |




#### 588 881 Electronics 1

| 1 | STE Potentiometer, 220 W            | .577 | 90 |
|---|-------------------------------------|------|----|
| 1 | Earphone                            | .579 | 29 |
| 1 | STE Transistor BD 137               | .578 | 67 |
| 1 | STE Transistor BD 138               | .578 | 68 |
| 2 | STE Si-diodes 1 N4007               | .578 | 51 |
| 1 | STE Z-diode ZPD 6,2                 | .578 | 55 |
| 1 | STE Capacitor 100 m F               | .578 | 39 |
| 1 | STE Capacitor 470 m F               | .578 | 40 |
| 1 | STE Light-emitting diodes LED green | .578 | 57 |
| 1 | STE Light-emitting diodes LED red   | .578 | 48 |
| 1 | STE NTC-Resistor 2,2 kW             | .578 | 05 |
| 1 | STE Photoresistor LDR 05            | .578 | 02 |
| 1 | STE Resistor, 470 W                 | .577 | 40 |
| 1 | STE Resistor, 1 kW                  | .577 | 44 |
| 1 | STE Resistor, 4,7 kW                | .577 | 52 |
| 1 | STE Resistor, 10 kW                 | .577 | 56 |
| 1 | STE Resistor, 47 kW                 | .577 | 64 |
|   |                                     |      |    |




#### 588 882 Electronics 2

| 1 | board section                           | 576 | 71 |
|---|-----------------------------------------|-----|----|
| 1 | Set of 10 bridging plugs                | 510 | 48 |
| 1 | STE Microphone                          |     |    |
| 2 | STE Capacitors, 1 µF                    |     |    |
| 1 | STE Capacitor, 470 µF                   | 578 | 40 |
| 1 | STE Medium-wave LC oscillating circuit. | 578 | 94 |
| 1 | STE Contact (NO)                        | 579 | 10 |
| 2 | STE Capacitors, 0,1 µF                  | 578 | 31 |
| 1 | STE Capacitor, 100 µF                   | 578 | 39 |
| 1 | STE Ge-diode AA 118                     | 578 | 50 |
| 1 | STE Variable resistor, 100 kW           | 577 | 83 |
| 1 | STE Variable resistor, 47 kW            | 577 | 82 |
| 1 | STE Variable resistor, 10 kW            | 577 | 80 |
| 1 | STE Transistor BD 137                   | 578 | 67 |
| 1 | STE Transistor BC 550                   | 578 | 69 |
|   |                                         |     |    |



#### 588 883 Electronics 3

| 1 | STE photo-transistors for OWG     | 578 613 |
|---|-----------------------------------|---------|
| 1 | STE Forked light barrier          | 578 835 |
| 2 | STE Solar cells                   | 578 622 |
| 1 | Pair of optical waveguides        | 579 44  |
| 1 | STE infrared diode for OWG        | 578 482 |
| 1 | STE photodiode for OWG            | 578 612 |
| 1 | STE light ermitting diode for OWG | 578 481 |
|   |                                   |         |





#### 588 845 Optics with the raybox

| 1 | Raybox 12 V, 20 W       | 459 091 |
|---|-------------------------|---------|
| 1 | Combined mirror model   | 459 41  |
| 1 | Plano-concave lens      | 459 50  |
| 1 | Plano-convex lens       | 459 48  |
| 1 | Semicircular body       | 459 45  |
| 1 | Right-angled prism      | 459 46  |
| 1 | Trapezoidal body        | 459 44  |
| 1 | Semicircular cell       | 459 52  |
| 1 | Rectangular cell        | 459 51  |
| 1 | Disk with angular scale | 459 40  |
|   |                         |         |



#### 588 840 Basic Optics

| 1 | Set of 2 slit diaphragms      | 461 62     |
|---|-------------------------------|------------|
| 1 | Measuring tape, 1.5 m         | 311 78     |
| 1 | Optics table                  | 459 15     |
| 1 | Extension pin                 | 309 00 441 |
| 2 | Candle holders                | 459 31     |
| 5 | Clamp riders                  | 460 95     |
| 1 | Lens A, f = +50 mm            | 459 60     |
| 1 | Lens B, f = +100 mm           | 459 62     |
| 1 | Lens H, f = +300 mm           | 459 64     |
| 1 | Halogen optical lamp, 12V/20W | 459 031    |
| 1 | Diaphragm and slide holder    | 459 33     |
| 1 | Precision metal rail          | 460 82     |
|   |                               |            |



#### 588 841 Optics 1

| 1 | Set of 12 Transparencies   |        |
|---|----------------------------|--------|
|   | »Optical illusions«        | 461 68 |
| 1 | Set 4 different diaphragms | 461 63 |
| 1 | Rectangular cell           | 459 51 |
| 1 | Semicircular cell          | 459 52 |
| 1 | Lens model, plan-convex    | 459 48 |
| 1 | Lens model, plan-concave   | 459 50 |
| 1 | Rectangular prism          | 459 46 |
| 1 | Earth-moon model           | 459 39 |
| 1 | Trapezoidal body           | 459 44 |
| 1 | Plane mirror               | 459 38 |
| 1 | Semicircular body          | 459 45 |
| 1 | Convex-concave mirror      | 459 71 |
| 1 | Plate holder               | 459 30 |
| 1 | Transparent screen         | 459 24 |
| 1 | Lens E, f = -100 mm        | 459 68 |
| 1 | Combined mirror model      | 459 41 |
| 1 | Set of 2 transparencies    | 461 66 |
| 1 | Set of 4 hole diaphragms   | 461 64 |
| _ |                            |        |



#### 588 842 Optics 2

| 1 | Lamp, threefold                              |
|---|----------------------------------------------|
| 1 | Filter, threefold, red/green/blue467 97      |
| 1 | Colour filter set, red/green/blue467 95      |
| 1 | Colour filter set, magenta/cyan/yellow467 96 |
| 1 | Acrylic glass prism465 20                    |



#### 588 843 Optics 3

| 1 | Magazine box for 30 slides442 89          |
|---|-------------------------------------------|
| 1 | Diaphragm with 3 single slits469 91       |
| 1 | Diaphragm with 4 double slits469 84       |
| 1 | Diaphragm with 3 double slits469 85       |
| 1 | Diaphragm with multiple slits469 86       |
| 1 | Diaphragm with 3 gratings469 87           |
| 1 | Diaphragm with 2 wire-mesh gratings469 88 |
| 1 | Diaphragm with 3 hole-object pairs469 89  |
| 1 | Diaphragm with slit and wire469 90        |
| 1 | Colour filter, red200 25 265              |
| 1 | Precision metal rail460 82                |
| 1 | Mirror box459 17                          |
| 1 | Measuring magnifier459 19                 |
| 1 | Adjustable slit471 71                     |
|   |                                           |



#### 588 844 Optics 4

| 2 | Polarization filters | 472    | 38 |
|---|----------------------|--------|----|
| 1 | Set of object frames | .662 0 | 93 |
|   | Glass tank           |        |    |
| 1 | Photo-elastic object | 471    | 94 |
|   | Acrylic glass screen |        |    |
|   |                      |        |    |



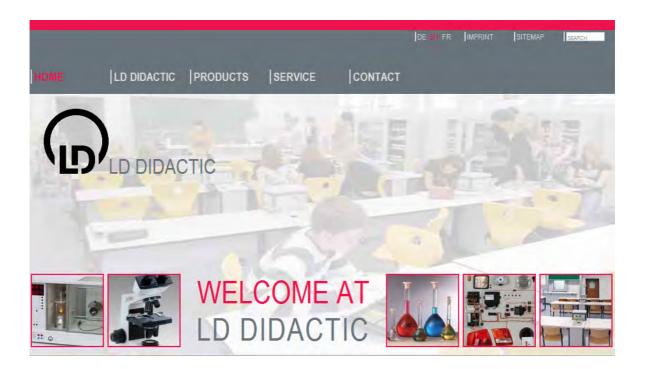
#### list of content



#### 588 855 Radioactivity

- 1 Counter tube holder
- Preparation holder
- 1 Magazine box
  - for absorbers and diaphragms; dimensions: 50 mm x 50 mm
  - 8 Lead slides
  - 3 Lead diaphragm
  - 4 Aluminium slides
  - 2 Steel slides
  - 1 Tin slide
  - 2 Plastic slides
  - 1 Lacquered lead slide
  - with two different lacquer thicknesses
- Acetate film, 300 x 300 mm
- 1 RAD plug-in board
- 3 Clamps

- 2 Round magnets in holders
- 1 Plastic tube, 150 mm long
- 1 Aluminium frame, 70 mm x 70 mm
- 1 Incandescent gas hood
- 2 Ballons
- 1 Can with Brazil nut ash
- 1 Bottle with potassium sulphate, 50 g
- 2 Metal plates
- 1 Bottle with lead shot, 100 g
- 1 Set of 10 plastic bags
- 1 Preparation mock-up
- 2 Magnet holding pins, 80 mm long
- 2 Tube holders


#### **Accessories and cnsumable materials**

| Description                                                                                                                                | Topic group<br>Cat. No.                                       | 1.1           | 1.2 | 1.3                          | 1.4                  | 2.1                       | 3.1 | 3.2 3.               | .3 3.4         | 1 3.5    | 3.6      | 5. 3.7 | 4.1     | 4.2               | 4.3           | 5.1                  | 5.2                  | 5.3                  | 5.4                                   | 5.5                  | 6.1   | completely<br>minima            |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------|-----|------------------------------|----------------------|---------------------------|-----|----------------------|----------------|----------|----------|--------|---------|-------------------|---------------|----------------------|----------------------|----------------------|---------------------------------------|----------------------|-------|---------------------------------|
| Single pan balance<br>Electronic balance                                                                                                   | 315 07<br>667 794                                             | 1*<br>1*      |     |                              |                      | 1*<br>1*                  |     |                      |                |          |          |        |         |                   |               |                      |                      |                      |                                       |                      |       | 1                               |
| Stop-clock                                                                                                                                 | 313 07                                                        | 1             | 1   | 1                            |                      | 1                         |     |                      |                |          |          |        |         | 1                 |               |                      |                      |                      |                                       |                      |       | 1                               |
| Scissors<br>Colouring soluble<br>Overflow fressel                                                                                          | 667 017<br>309 42<br>362 04                                   | 1<br>1<br>(1) | 1   |                              |                      | 1                         |     |                      | 1              | 1        |          |        |         |                   |               |                      |                      |                      |                                       |                      |       | 1<br>1<br>(1)                   |
| Writing pin Roll metallizid paper Crocodile clips, polish Pair magnets                                                                     | 309 05 060<br>346 06<br>200 72 828<br>510 48                  |               |     | (1)<br>(1)<br>(2)<br>(2)     |                      |                           |     |                      |                |          |          |        |         |                   |               |                      |                      |                      |                                       |                      |       | (1)<br>(1)<br>(2)<br>(2)        |
| Burners and accessories, e.g.:<br>Bunsen burner<br>Safety gas hose<br>Cartridge burner<br>Cartridges<br>Wire gauze<br>Stand ring with stem | 666 695<br>666 729<br>666 714<br>666 715<br>666 685<br>302 68 |               |     |                              |                      | 1*<br>1*<br>1*<br>1*<br>1 |     | 1*<br>1*<br>1*<br>1* |                |          |          |        |         |                   |               |                      |                      |                      |                                       |                      |       | 1<br>1<br>1                     |
| Electric tourch Candle fror                                                                                                                | 450 651<br>n 459 32                                           |               |     |                              |                      |                           |     |                      | 1              |          |          |        |         |                   | 1             |                      | 2                    |                      |                                       |                      |       | 1 2                             |
| Precision metal rail 0,5 m                                                                                                                 | 460 82                                                        |               |     |                              |                      |                           |     |                      |                |          |          |        |         |                   |               |                      | 1                    | 1                    | 1                                     | 1                    |       | 1                               |
| Fresnel's mirror<br>Apparatus for Newton's rings<br>Fresnels Biprism                                                                       | 471 04<br>471 08<br>471 09                                    |               |     |                              |                      |                           |     |                      |                |          |          |        |         |                   |               |                      |                      |                      | (1)<br>(1)<br>(1)                     |                      |       | (1)<br>(1)<br>(1)               |
| Monocells from Fransformer 6V/12V Low-voltage power supply AC/DC power supply AC/DC power supply 012 V Power supply 450 V                  | n 503 11<br>521 210<br>521 230<br>521 49<br>521 48<br>522 27  |               |     | (1)*<br>(1)*<br>(1)*<br>(1)* | 1*<br>1*<br>1*<br>1* | 1*<br>1*<br>1*<br>1*      |     | 1                    | 1'<br>1'<br>1' | 1*       |          |        | 1* 1*   | 1*<br>1*          | 2<br>1*<br>1* | 1*<br>1*<br>1*<br>1* | 1*<br>1*<br>1*<br>1* | 1*<br>1*<br>1*<br>1* | 1*<br>1*<br>1*<br>1*                  | 1*<br>1*<br>1*<br>1* |       | 1                               |
| Function generator                                                                                                                         | 522 621                                                       |               |     | 1                            |                      |                           |     |                      |                |          | 1        |        |         |                   | 1             |                      |                      |                      |                                       |                      |       | 1                               |
| Metramax 2<br>Moving coil galvanometer                                                                                                     | 531 100<br>531 67                                             |               |     |                              |                      |                           |     | 1                    | 2              | 2<br>(1) | 2<br>(1) |        | 2       | 2                 | 2             |                      |                      |                      |                                       |                      |       | 2<br>(1)                        |
| Electrometer amplifier<br>STE Capacitor 1 nF<br>STE Capacitor 10 nF<br>Connecting rod                                                      | 532 14<br>578 25<br>578 10<br>532 16                          |               |     | X                            |                      |                           |     | 1<br>1<br>1<br>1     | ×              | X        | X        | X      | X       | ×                 | X             |                      | X                    | X                    | X                                     | X                    |       | 1<br>1<br>1<br>1                |
| Insulated twin wire Aerial amplifier Loudspeaker with transformer Micromotor                                                               | 501 47<br>578 99<br>579 28<br>579 37                          |               |     | Α                            |                      |                           |     | ^                    |                |          | ^        | Α      |         | (1)<br>(1)<br>(1) | (1)           |                      | X                    | ^                    | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ^                    |       | (1)<br>(1)<br>(1)<br>(1)<br>(1) |
| 4 V / 0,16 W from 12 V / 3 W from 12 V / 3 W                                                                                               | n 505 11<br>n 505 07<br>n 505 08<br>n 505 06<br>505 13        |               |     |                              |                      |                           |     |                      | 2 1 2          | 1        | 1        | 1      | 1 2 1 1 | 2                 | 1             |                      |                      |                      |                                       |                      |       | 2<br>2<br>2<br>1                |
| Resistance wire:<br>Constantan 0,35 mm<br>Chrom-nickel 0,25 mm<br>Chrom-nickel 0,35 mm<br>Iron 0,20 mm                                     | 550 42<br>550 46<br>550 47<br>550 51                          |               |     |                              |                      |                           |     |                      | X<br>X<br>X    | Х        |          |        |         |                   |               |                      |                      |                      |                                       |                      |       | x<br>x<br>x<br>x                |
| End-window counter<br>Counter S<br>Ra 226 preparation                                                                                      | 559 01<br>575 471<br>559 430                                  |               |     |                              |                      |                           |     |                      |                |          |          |        |         |                   |               |                      |                      |                      |                                       |                      | 1 1 1 | 1<br>1<br>1                     |

Quantity for each group: (1) recommendable 1\* alternative



LD DIDACTIC · CATALOGUE PHYSICS



### www.ld-didactic.com

Meet the experts: the LD Didactic GmbH Website Visit our website for the latest special offers and exciting information about our products. Plus, our Online Center is waiting to help you with technical questions.



+ 49 2233 604 - 0

#### LD DIDACTIC GMBH Leyboldstraße 1

D – 50354 Huerth - Germany

+ 49 2233 604 - 222

info@ld-didactic.de

www.ld-didactic.com

